An up-to-date version is found here.
A pdf with publications is here.
Peer-reviewed Journal publications include (2005-2017):
- Pelckmans K., J.A.K. Suykens, B. De Moor (2005). Building Sparse Representations and Structure Determination on LS-SVM Substrates, Neurocomputing, Vol. 64, pp. 137-159.
- Goethals I., K. Pelckmans, J.A.K. Suykens, B. De Moor (2005). Identification of MIMO Hammerstein Models using Least Squares Support Vector Machines, Automatica, vol. 14, nr. 4, pp. 1263-1272.
- Pelckmans K., J. De Brabanter, J.A.K. Suykens, B. De Moor (2004). The Differogram: Nonparametric noise variance estimation and its use for model selection, Neurocomputing, vol. 69, Issues 1-3, pp. 100-122.
- Pelckmans K., M. Espinoza, J. De Brabanter, J.A.K. Suykens, B. De Moor (2005). Primal-Dual Monotone Kernel Regression, Neural Processing Letters, vol. 22, no. 2, Oct 2005, pp. 171-182.
- Pelckmans K., J. De Brabanter, J.A.K. Suykens, B. De Moor (2005). Handling Missing Values In Support Vector Machine Classifiers, Neural Networks, vol. 18, pp. 684-692.
- Goethals I., K. Pelckmans, J.A.K. Suykens, B. De Moor (2005). Subspace Identification of Hammerstein Systems using Least Squares Support Vector Machines, IEEE Transac- tions on Automatic Control, Special Issue on System Identification, Vol. 50, no. 10, pp. 1509-1519.
- Pelckmans K., J.A.K. Suykens, B. De Moor (2006). Additive regularization: fusion of training and validation levels in Kernel Methods, Machine Learning, vol. 62, no. 3, pp. 217-252.
- Pelckmans K., J.A.K. Suykens, B. De Moor (2007). A Convex Approach to Validation- based Learning of the Regularization Constant, IEEE Transactions on Neural Networks, vol. 18, no. 3, pp. 917-920.
- Van Herpe T., K. Pelckmans, J. De Brabanter, F. Janssens, B. De Moor, G. Van den Berghe (2008). Statistical approach of assessing the reliability of glucose sensors: The GLYCENSIT-procedure, Journal of Diabetes Science and Technology, vol. 2, no. 6, pp. 939-947.
- Van Belle V., Pelckmans K., Suykens J.A.K., Van Huffel S. (2010). Additive survival least squares support vector machines, Statistics in Medicine, vol. 29, no. 2, Jan, pp. 296 – 308.
- Babu P., Pelckmans K., Stoica P., Li J. (2010). Linear Systems, Sparse Solutions, and Sudoku, IEEE Signal Processing Letters, vol. 17, no 1.
- Pelckmans K., J. De Brabanter,, J.A.K. Suykens, B. De Moor (2009). Least Conservative Support and Tolerance Tubes, IEEE Transactions on Information Theory, vol. 55, no. 8, Aug. 2009, pp. 3799-3806.
- Suykens J.A.K., Alzate C., Pelckmans K. (2010). Primal and dual model representations in kernel-based learning, Statistics Surveys, 4, 2010, pp. 148-183.
- Van Belle V., Pelckmans K., Van Huffel S., Suykens J.A.K.(2010), Improved Performance on High-Dimensional Survival Data by Application of Survival-SVM. Bioinformatics. vol. 27, no. 1, Jan. 2011, pp. 87-94.
- Van Belle V., Pelckmans K., Suykens J.A.K., Van Huffel S. (2011) Learning Transforma- tion Models for Ranking and Survival Analysis. Journal of Machine Learning Research, vol. 12, 2011, pp. 819-862.
- Pelckmans K. (2010) MINLIP for the Identification of Monotone Wiener Systems. Au- tomatica, vol. 27, no. 10, 2011, pp. 2298-2305
- Van Belle V., Pelckmans K., Van Huffel S, Suykens, J.A.K (2011) Support vector meth- ods for survival analysis: a comparison between ranking and regression approaches. Artificial Intelligence in Medicine, vol. 53, no. 2, 2011, pp. 107-118.
- Karsmakers P., Pelckmans K., De Brabanter K., Van hamme H., Suykens J.A.K. (2011) Sparse conjugate directions pursuit with application to fixed-size kernel models. Machine Learning vol. 85, no. 1-2, 2011, pp. 109-148.
- Falck T., Dreesen P., De Brabanter K., Pelckmans K., De Moor B., Suykens J.A.K. (2012) Least-Squares Support Vector Machines for the identification of Wiener-Hammerstein systems. Control Engineering Practice, Vol. 20, no. 11, 2012, pp. 1165–1174.
- Nygren J., Pelckmans K., and Carlsson B.. Approximate adjoint-based iterative learning control. In International Journal of Control, volume 87, number 5, pp 1028-1046, 2014.
- Dai L., Pelckmans K., and Bai E.-W. Identifiability and convergence analysis of the MINLIP estimator. In Automatica, volume 51, pp 104-110, 2015.
- Dai L. and Pelckmans K. On the nuclear norm heuristic for a Hankel matrix completion problem. In Automatica, volume 51, pp 268-272, 2015
- Dai L. and Pelckmans K. Sparse estimation from noisy observations of an overdetermined linear system. In Automatica, volume 50, number 11, pp 2845-2851, 2014.
- Xiaolin Huang, Lei Shi, Kristiaan Pelckmans, and Johan A. K. Suykens. Asymmetric nu-tube support vector regression. In Computational Statistics & Data Analysis, volume 77, pp 371-382, 2014.
- Dai L., Soltanalian M., and Pelckmans K. On the randomized Kaczmarz algorithm. In IEEE Signal Processing Letters, volume 21, number 3, pp 330-333, 2014.
- Stoica A., Pelckmans K., Rowe, W. System components of a general theory of software engineering. Science of Computer Programming, 101: 42-65 (2015).
- L. Yang, Pelckmans K., ’Machine Learning Approaches to Survival Analysis: Case Studies in Microarray for Breast Cancer’, in International Journal of Machine Learning and Computing vol. 4, no. 6, pp. 483-490, 2014.
- Nygren J. and Pelckmans K. A direct proof of the discrete time multivariate circle and Tsypkin criteria. IEEE Transactions on Automatic Control, vol. 61, no. 2, pages 1-6, February 2016.
- Jensen H., Zackrisson E., Pelckmans K., Binggeli C., Ausmees K., and Lundholm U., ’A Machine-Learning Approach to Measuring Escape Of Ionizing Radiation from Galaxies in the Reionizing Epoch’ The Astrophysical Journal, Volume 827, Number 1, August 2016.
- Szorkovszky A.; Kotrschal A., Sumpter D. J. T. , Kolm N. and Pelckmans K. (2017) An efficient method for sorting and selecting for social behaviour. Methods in Ecology and Evolution, vol. 8 nr. 12, pp 1735–1744, DOI: 10.1111/2041-210X.12813, year 2017.
- Nygren J., Wigren T. and Pelckmans K. (2017) Frequency Conditions for Stable Net- worked Controllers with Time-Delay. International Journal of Control. 2017..
- Yasini S., Pelckmans K. (2017), Worst-case Performance Analysis of the Kalman Filter. IEEE Transactions on Automatic Control, vol. pp 1-8 no. 99, September 2017.
Home | Research | Publications | Teaching | Projects | Scribbles | Contact